Regularity of Leray-hopf Solutions to Navier-stokes Equations (i)-critical Regularity in Weak Spaces

نویسندگان

  • JIAN ZHAI
  • Jian Zhai
چکیده

We consider the regularity of Leray-Hopf solutions to impressible Navier-Stokes equations on critical case u ∈ L 2 w (0, T ; L ∞ (R 3)). By a new embedding inequality in Lorentz space we prove that if u L 2 w (0,T ;L ∞ (R 3)) is small then as a Leray-Hopf solution u is regular. Particularly, an open problem proposed in [8] is solved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regularity of Leray-hopf Solutions to Navier-stokes Equations (i)-critical Interior Regularity in Weak Spaces

We consider the interior regularity of Leray-Hopf solutions to Navier-Stokes equations on critical case u ∈ L 2 w (0, T ; L ∞ (R 3)) was obtained. By a new embedding inequality in Lorentz space we proved that if u L 2 w (0,T ;L ∞ (R 3)) is small then the Leray-Hopf solutions are regular. Particularly, an open problem proposed in [KK] was solved.

متن کامل

Regularity of Leray-hopf Solutions to Navier-stokes Equations (1)-critical Regularity in Weak Spaces

We consider the regularity of Leray-Hopf solutions to Navier-Stokes equations on critical case u ∈ L 2 w (0, T ; L ∞ (R 3)). By a new embedding inequality in Lorentz space we proved that if u L 2 w (0,T ;L ∞ (R 3)) is small then the Leray-Hopf solutions are regular. Particularly, an open problem proposed in [7] was solved.

متن کامل

Regularity Criteria in Weak Spaces for Navier-stokes Equations in R

In this paper we establish a Serrin type regularity criterion on the gradient of pressure in weak spaces for the Leray-Hopf weak solutions of the Navier-Stocks equations in R. It partly extends the results of Zhou[2] to L w spaces instead of L spaces.

متن کامل

The Navier-stokes Equations in Nonendpoint Borderline Lorentz Spaces

It is shown both locally and globally that Lt (L 3,q x ) solutions to the three-dimensional Navier-Stokes equations are regular provided q 6= ∞. Here L x , 0 < q ≤ ∞, is an increasing scale of Lorentz spaces containing Lx. Thus the result provides an improvement of a result by Escauriaza, Seregin and Šverák ((Russian) Uspekhi Mat. Nauk 58 (2003), 3–44; translation in Russian Math. Surveys 58 (2...

متن کامل

Regularity of Leray-hopf Solutions to Navier-stokes Equations

Theorem 1.1. Suppose u is a Leray-Hopf solution to the Navier-Stokes equation (1.1) with initial data u0 ∈ L(R) and blows up as t → T . Then (1) (T − t) 14‖∇xu(t)‖L2(R3) → 0, as t → T ; (2) (T − t) 1 2‖u(t)‖L∞(R3) → 0, as t → T. Here u : (x, t) ∈ R × (0, T ) → R is called a weak solution of (1.1) if it is a Leray-Hopf solution. Precisely, it satisfies (1) u ∈ L(0, T ;L(R)) ∩ L(0, T ;H(R)), (2) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008